
Journal of Applied Mechanics and Technical Physics, Vol. 43, No. 3, pp. 391–396, 2002

EXACT SOLUTION OF THE CAPILLARY DIFFUSION EQUATION

FOR A THREE-COMPONENT MIXTURE

UDC 532.6O. E. Aleksandrov

The paper gives an exact solution of the steady system of equations for stable three-component diffu-
sion in the entire range of concentrations for a long capillary under a controlled capillary pressure
differential. The solution allows one to calculate the distributions of component concentrations and
mixture density along the capillary. It is shown that if the diffusion coefficients are markedly differ-
ent, an extremum of mixture density can arise inside the capillary. In particular, if the density of the
mixture in the upper flask is higher than that in the lower flask and the stratification of the system is
generally stable, a region with a reverse density gradient that is unstable against gravity convection
can appear inside the capillary. A comparison with experimental results shows that the resistance to
gravity convection is disturbed when an extremum of mixture density arises in the channel during
steady diffusion.

Free convection in a heterogeneous three-component gas medium in a gravitational field for the case where
the mixture density is smaller in the upper flask than in the lower flask was discovered in 1966. Studies of [1–3] and
subsequent experimental investigations [4, 5] demonstrated that convection has a number of interesting features.

To establish the causes of abnormal convection, Kosov and Seleznev [4] attempted to solve the system of
equations of steady three-component capillary diffusion for the case of lower concentration of one of the compo-
nents. However, for finite concentrations of all mixture components, this solution gives a non-physical result —
a concentration extremum inside the capillary for one of the components.

The present paper gives an exact solution of the equations of steady three-component diffusion over the
entire range of concentrations for a long capillary under conditions of a controlled capillary pressure difference, i. e.,
in the presence of a hydrodynamic capillary flow of the mixture.

We consider the problem of steady diffusion of a three-component mixture of ideal gases through a long
(L � R) capillary (L and R are the capillary length and radius, respectively). Figure 1 shows a diagram of the
capillary diffusion.

Below, the superscript i = 1, 2, 3 corresponds to the mixture component number (the mixture components
are arranged so that m1 < m2 < m3, where mi is the molecular weight of the ith component).

Let the concentration and pressure in the flasks (see Fig. 1) be constant. The stable steady three-component
capillary diffusion is described by the equations

P1 = const, P2 = const, T = const,
(1)∑

i

ci = 1, div(nciui) = 0 (i = 1, 2),
3∑
j=1

cicj
Dij

(ui − uj) = − grad (ci) (i = 1, 2),

where P is the gas pressure, T is the gas temperature, n is the number density of the gas, which changes along
the capillary because of the pressure difference and gravity, ci is the molar concentration of the ith component,
ui is the average-number velocity of the ith component, and Dij is the interdiffusion coefficient of the ith and jthe
components. The last equation in (1) is a Stefan–Maxwell equation.
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Fig. 1. A diagram of capillary diffusion of the gas mixture.

The pressure difference gives rise to a nonzero average-number molecular flux through the capillary. For
a closed system of flasks, the number averaged molecular flux is equal to zero although in this case, the pressure
difference is nonzero due to the barodiffusion effect. More precisely, a number averaged molecular flux arises when
the channel pressure difference differs from the barodiffusion value. We consider the case of a small pressure
difference, i.e., a slow gas flow. For large pressure differences, it is difficult to specify boundary conditions for
diffusion because it is necessary to obtain a solution for the concentration field in the vicinity of the capillary ends;
however, the solution type remains the same as for laminar flows.

Since the capillary is long and thin and the flow is slow, the transverse concentration distribution is ignored,
i.e., the system is considered one-dimensional. Averaging system (1) over the channel cross section, we obtain the
following system (the trivial equation for temperature is omitted):∑

i

ci = 1, n
∑
i

ciui = j =
J

S
, nciui = ji =

Ji
S

= γi (i = 1, 2),
(2)

3∑
j=1

cicj
Dij

(ui − uj) = −dci
dz

(i = 1, 2).

Here J is the total number flux through the capillary, Ji is the total number flux of the ith component through
the capillary, S is the cross-section area of the capillary, j and ji are the densities of the number flux and the ith
component, respectively, and γi is a constant.

It should be noted that we do not solve the problem of the relationship between the flux J and the pressure
difference ∆P , restricting ourselves to the statement that J is constant along the channel. The value of J must be
found from the solution of the hydrodynamic problem.

The boundary conditions for system (2) are

c1(0) = C11, c2(0) = C21, c1(L) = C12, c2(L) = C22, (3)

where Cik are the concentrations of the components in the flasks, i = 1 and 2 is the component number, and k = 1
and 2 is the flask number.

In the notation of (2), the Stefan–Maxwell equations reduce to
3∑
j=1

1
nDij

(cjji − cijj) = −dci
dz

(i = 1, 2).

Since ji = const and c3 = 1− c1− c2, for two independent concentrations (the solution can be easily extended to an
N -component mixture), we have a closed system of two heterogeneous linear equations with constant coefficients.

We introduce the following notation: ϕi = ji/j is the dimensionless flux, ζ = jz/(nD12) is the dimensionless
coordinate, and δi3 = Di3/D12 (i = 1, 2) are the dimensionless diffusion coefficients (δ12 = 1). Then,

3∑
j=1

1
δij

(cjϕi − ciϕj) = −dci
dζ

(i = 1, 2),
3∑
i=1

ϕi = 1. (4)

Expressing c3 and ϕ3 in (4) in terms of ci and ϕi (i = 1 and 2), we have the equations

c2j1

( 1
δ12
− 1
δ13

)
− c1

( ϕ2

δ12
− 1− ϕ2

δ13

)
+
dc1
dζ

= − ϕ1

δ13
,

(5)

c1j2

( 1
δ12
− 1
δ23

)
− c2

( ϕ1

δ12
− 1− ϕ1

δ23

)
+
dc2
dζ

= − ϕ2

δ23
,
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Fig. 2. Distributions of Ar, He, and R12 concentrations (a, curves 1–3, respectively) and density (b) for a
(30% R12 + 70% He)–Ar mixture for j = 0 (CAr,1 = 1, CHe,2 = 0.7, CR12,2 = 0.3, mAr = 0.0399 kg/mole,
mHe = 0.004026 kg/mole, mR12 = 0.121 kg/mole, DHe−Ar = 6.39 ·105 m2/sec, DHe−R12 = 3.3 ·105 m2/sec,
DAr−R12 = 0.69 · 105 m2/sec, jHe = −4.238 · 105 m/sec, and jAr = 4.247 · 105 m/sec).

where ϕi are the arbitrary constants of integration determined from the boundary conditions. It is the independence
of the component flux through the channel cross section that makes this problem solvable exactly without additional
assumptions on the smallness of the concentration of one of the components [4].

The solution of the system of inhomogeneous linear equations is the sum of the particular solution of the
homogeneous system cFi and the general solution of the uniform system c0i: ci = cFi + c0i.

Denoting

A =
1− ϕ1

δ23
+

1− ϕ2

δ13
+

1− ϕ3

δ12
, B =

ϕ1

δ12δ13
+

ϕ2

δ12δ23
+

ϕ3

δ13δ23
,

we can express c2 in terms of c1 from the first equation in (7) and obtain the following equation for c1:

d2c1
dζ2

−A dc1
dζ

+Bc1 = Bϕ1.

The general solution of the homogeneous system (5) has the form

c0i =
2∑
k=1

Xli exp (λkζ), (6)

and a particular solution of the inhomogeneous system (5) has the form cFi = ϕi. In the exponent (6), the
constants λk are calculated from the formula

λk = (A+ (−1)k
√
A2 − 4B )/2 (k = 1, 2).

Introducing the additional notation

Ki =
1− δ13λi
δ13 − 1

+ ϕ2, x1 =
K2C11 − C12 + ϕ2 −K2ϕ1

K2 −K1
, x2 =

K1C11 − C12 + ϕ2 −K1ϕ1

K1 −K2
,

where explicit boundary conditions (3) for z = 0 are taken into account, we finally have

c1(ζ) = ϕ1 + x1 exp (λ1ζ) + x2 exp (λ2ζ), c2(ζ) = ϕ2 +K1x1 exp (λ1ζ) +K2x2 exp (λ2ζ). (7)

It is impossible to express explicitly the constants ϕi from boundary conditions (3) for z = L but we can calculate
ϕi numerically for specified concentrations C2i.

Solution (7) can be used to calculate the distribution of the mixture density inside the channel:

ρ(z) =
∑
i

nmici(z).

As follows from the curves of ρ =
∑
i

nmici(z)
/∑

i

nmi versus z/L shown in Figs. 2–5, an extremum of mixture

density is observed inside the channel for some combinations of gases (Ci and mi are the concentration and molecular

393



Fig. 3. Distributions of N2, Ar, and H2 concentrations (a, curves 1–3, respectively) and density (b) for a
N2–(35% H2 + 65% Ar) mixture for j = 0 (CN2,1 = 1, CH2,2 = 0.35, CAr,2 = 0.65, mN2 = 0.028 kg/mole,
mH2 = 0.002 015 8 kg/mole, mAr = 0.0399 kg/mole, DH2−N2 = 6.89 · 105 m2/sec, DH2−Ar = 7.25 · 105 m2/sec,
DN2−Ar = 0.9 · 105 m2/sec, jH2 = −2.436 · 105 m/sec, and jN2 = 2.594 · 105 m/sec).

Fig. 4. Distributions of N2, CO2, and H2 concentrations (a, curves 1–3, respectively) and density (b) for
a (38% H2+62% CO2)–N2 mixture for j = 0 (CH2,1 = 0.38, CCO2,1 = 0.62, CN2,2 = 1, mH2 = 0.002 015 8 kg/mole,
mCO2 = 0.044 kg/mole, mN2 = 0.028 kg/mole, DH2−N2 = 6.89 · 105 m2/sec, DH2−CO2 = 5.75 · 105 m2/sec,
DN2−CO2 = 1.29 · 105 m2/sec, jH2 = −2.512 · 105 m/sec, and jN2 = 2.896 · 105 m/sec).

weight of the components, respectively, Di are the diffusion coefficients of the components under normal conditions,
and ji are the densities of the component fluxes). In Figs. 2–4, the vertical dashed curve shows the cross section
in which the extremum is observed. Under conditions of an external gravitational field (diffusion in a vertical
capillary), the existence of an extremum of mixture density inside the channel can lead to convective instability of
the diffusion even if a less dense mixture is in the upper flask.

For j = 0, Figs. 2–4 show calculation results for several mixtures studied in [4]. All cases of disturbance of
diffusion stability observed in [4] are characterized by the appearance of a density extremum in the channel. We
note that for j = 0, solution (7) gives the desired concentration distribution only as the limit for j → 0. For j = 0,
we can modify the above solution and obtain a simpler explicit relation [6].

The concentration and density distributions were calculated for several values of the flux density, and the
results are shown in Fig. 5. From this figure it follows that the position and value (even the change of sign) of the
density inversion in the channel can be controlled by varying the flux j.

Since the concentration and density distributions along the capillary do not depend on the channel length L,
all calculations are performed for unit length. For the same reason, the concentration and density distributions can
be realized experimentally for any section of the axis Oz by maintaining the corresponding concentrations in the
flasks.

It can be stated that during diffusion of a three-component mixture, gravity convection (instability) is due
to the appearance of a minimum of mixture density inside the capillary.
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Fig. 5. Hydrodynamic flux density of an N2–(35% He + 65% Ar) mixture versus concentration and
pressure distributions for j = −16 (a), −4 (b), 2 (c), 4 (d), and 16 (e): curves 1–3 refer to N2, Ar, and
He, respectively; the dashed curve refers to j = 0 (CN2,1 = 1, CHe,2 = 0.35, CAr,2 = 0.65, mHe =
0.004026 kg/mole, mN2 = 0.028 kg/mole, mAr = 0.0399 kg/mole, DHe−N2 = 6.26 · 105 m2/sec,
DHe−Ar = 6.39 · 105 m2/sec, DN2−Ar = 0.9 · 105 m2/sec; for j = 0, jHe = −2.2 · 105 m/sec and
jN2 = 2.391 · 105 m/sec).

395



Remark 1. The appearance of a density extremum inside the channel causes convection. After the onset of
the convection, the above formulas become inapplicable. The density distribution with the extremum arises again
if the convection stops.

Remark 2. As follows from the given dependences, the densities ρmin/ρmax for gas mixtures change in the
range of 0.72–0.94. For a vertical channel of length 1 m, the corresponding relative change in density due to gravity
is defined by the Boltzmann factor: ρmin/ρmax = exp (−mg/(kT )) (in the numerator of the exponent, a dimensional
quantity equal to 1 m is omitted). For the heaviest gas (R12 Freon), this ratio is 0.9995. This difference in the values
of the relative change in density suggests that in the vertical channel, the change in density due to three-component
diffusion is dominant. The relative change in density due to gravity decreases with decrease in channel length, while
the change in density due to three-component diffusion retains its value. Moreover, the explicit relation for the
density (pressure) distribution in the channel was ignored in the solution of the problem; therefore, this solution
can be modified for a vertical channel by adding the barometric Boltzmann multiplier. Generally, the exponent of
the Boltzmann factor depends on the vertical coordinate, but because the relative change in density is small, as its
value, we can use the average molecular weight of the mixture in the channel as its value with sufficient accuracy.

The appearance of a density minimum is due to the presence of the third component in the mixture, and in
this case, it is necessary that the diffusion coefficients of these components differ significantly.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98-01-00879).
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